
Comparative Genomic Analysis of Genogroup 1 (Wa-like) 
Rotaviruses circulating in the USA, 2006 – 2009

Sunando Roya, Mathew D. Esonaa, Ewen F. Kirknessb, Asmik Akopovb, J. Kyle McAllenb, 
Mary Wikswoa, Margaret M. Cortesea, Daniel C. Paynea, Umesh Parashara, Jon R. 
Gentscha, Michael D. Bowena,*, and the National Rotavirus Strain Surveillance System; the 
New Vaccine Surveillance System
aDivision of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers 
for Disease Control and Prevention, Atlanta, Georgia, USA.

bThe J. Craig Venter Institute, Rockville Maryland, USA

Abstract

Group A Rotaviruses (RVA) are double stranded RNA viruses that are a significant cause of acute 

pediatric gastroenteritis. Beginning in 2006 and 2008, respectively, two vaccines, Rotarix™ and 

RotaTeq®, have been approved for use in the USA for prevention of RVA disease. The effects of 

possible vaccine pressure on currently circulating strains in the USA and their genome 

constellations are still under investigation. In this study we report 33 complete RVA genomes 

(ORF regions) collected in multiple cities across USA during 2006 – 2009, including 8 collected 

from children with verified receipt of 3 doses of rotavirus vaccine. The strains included 16 

G1P[8], 10 G3P[8], and 7 G9P[8]. All 33 strains had a Wa like backbone with the consensus 

genotype constellation of G(1/3/9)-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. From maximum 

likelihood based phylogenetic analyses, we identified 3 to7 allelic constellations grouped mostly 

by respective G types, suggesting a possible allelic segregation based on the VP7 gene of RVA 
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primarily for the G3 and G9 strains. The vaccine failure strains showed similar grouping for all 

genes in G9 strains and most genes of G3 strains suggesting that these constellations were 

necessary to evade vaccine-derived immune protection. Substitutions in the antigenic region of 

VP7 and VP4 genes were also observed for the vaccine failure strains which could possibly 

explain how these strains escape vaccine induced immune response. This study helps elucidate 

how RVA strains are currently evolving in the population post vaccine introduction and supports 

the need for continued RVA surveillance.
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1. Introduction

Group A Rotaviruses (RVA) are the major cause of acute gastroenteritis in children under 5 

years of age and the leading cause of gastroenteritis related deaths (~450,000) in developing 

countries every year (Estes and Kapikian, 2007; Parashar et al., 2009; Tate et al., 2012). In 

industrialized countries, RVA associated mortality is minimal yet the financial cost of 

treatment associated with disease burden is enormous (Payne et al., 2011). The RVA 

genome is composed of 11 double-stranded RNA (dsRNA) segments which code for 11or 

12 proteins in total, six structural proteins VP1-VP4, VP6 and VP7, and five or six 

nonstructural proteins NSP1-NSP5/6 (Estes and Kapikian, 2007). The VP7 and VP4 proteins 

form the outer layer of the viral capsid and have been historically used to classify RVA 

serotypes and genotypes into respective G and P types (Estes and Kapikian, 2007). These 

proteins have been extensively studied and a number of antigenic epitopes have been 

characterized. An extended classification system based on all 11 gene segments has been 

introduced by the Rotavirus Classification Working Group (RCWG) (Matthijnssens et al., 

2008b) and this classification system designates genotypes in the format Gx-P[x]-Ix-Rx-Cx-

Mx-Ax-Nx-Tx-Ex-Hx for the genes VP7, VP4, VP6, VP1-3, NSP1-5 respectively. Presently 

there are at least 27 G, 37 P, 16 I, 9 R, 9 C, 8 M, 16 A, 9 N, 12 T, 14 E, and 11 H types 

(Matthijnssens et al., 2011; Trojnar et al., 2013). The most common genogroup 

constellations worldwide based on the new classification are Wa like Genogroup 1 (Gx-

P[x]-I1-R1-C1-M1-A1-N1-T1-E1-H1) and DS-1 like Genogroup 2 (Gx-P[x]-I2-R2-C2-M2-

A2-N2-T2-E2-H2) (Matthijnssens et al., 2008b; Matthijnssens et al., 2012a). The genotype 

classification for an unknown strain is based on sequence identity cutoffs established by the 

RCWG and is currently implemented in the RotaC webserver (Maes et al., 2009).

In humans, the most common RVA G/P genotypes worldwide are G1P[8], G2P[4], G3P[8], 

G4P[8], and G9P[8] (Banyai et al., 2012; Gentsch et al., 2005). Two vaccines RotaTeq® 

(Merck) and Rotarix™ (GlaxoSmithKline) were introduced in the U.S. in 2006 and 2008, 

respectively (Cortese et al., 2009). RotaTeq® is a pentavalent human bovine reassortant 

vaccine which contains four G types (G1, G2, G3 and G4, VP7 gene) along with the P[8] 

VP4 type on a bovine WC3 (G6P[5]) backbone (Matthijnssens et al., 2010b). On the other 

hand, Rotarix™ is a human RVA derived G1P[8] strain (Ward, 2009). These vaccines have 

shown high efficacy in reducing the RVA burden in developed countries after their 
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introduction in various immunization programs (Gray, 2011). Unfortunately the same 

vaccines have much lower efficacy in some developing countries and this has caused some 

concern (Armah et al., 2010; Phua et al., 2009; Zaman et al., 2010). In addition it has been 

proposed that RVA vaccination in several countries may have driven the selection of new 

predominant genotypes through immune pressure (Carvalho-Costa et al., 2009; Hull et al., 

2011; Matthijnssens et al., 2012b; Zeller et al., 2010) though current evidence remains 

inconclusive. Globally, multiple surveillance networks have been established to study RVA 

prevalence in various countries (Carvalho-Costa et al., 2011; Hull et al., 2011; Iturriza-

Gomara et al., 2009; Kirkwood et al., 2010; Payne et al., 2008). In United States the two 

main RVA surveillance networks, National Rotavirus Strain Surveillance System (NRSSS) 

and the New Vaccine Surveillance Network (NVSN) have been established to monitor RVA 

strain prevalence in multiple parts of the country (Hull et al., 2011; Payne et al., 2008).

RVA genomes show high genomic diversity similar to other known RNA viruses. The 

diversity is generated by point mutations, reassortment, rearrangement and recombination 

events (Estes, 2007; Kirkwood et al., 2010). The proteins of RVA are known to evolve at 

substantially different rates with VP1 and VP2 being highly conserved whereas NSP1 is 

known to be highly divergent (Matthijnssens et al., 2008a). A recent study measured 

evolutionary rates of all 11 gene segments for the SA11-H96 strain and found nearly a 100 

fold difference in evolutionary substitution rates among the 11 gene segments (Mlera et al., 

2013). The evolutionary rates for the VP7 gene of G9 and G12 strains have also been 

calculated by Mathijnnesens et al to be 1.87 × 10−3 and 1.66 × 10−3 substitutions/site/year 

respectively (Matthijnssens et al., 2010a). Reassortment occurs when gene segments are 

exchanged between two different strains of RVA during a co-infection event. Multiple 

reassortments have been documented between two genogroups and also between different 

host species, albeit at a lower frequency (Varghese et al., 2004). Animal-to-human cross-

transmission and reassortment events between human and animal strains have been 

suggested as one of the possible reasons for the low vaccine efficacy in developing countries 

(Martella et al., 2010; Palombo, 2002). Reassortment has also been recently reported 

between sub-genotypic clusters (Maunula and Von Bonsdorff, 2002; McDonald et al., 

2012). Rearrangements events, although infrequent, have been observed in the NSP1 and 

NSP3 genes of cell culture passaged strains (Kojima et al., 2000). The short 

electropherotype of DS-1 like RVA strains is the result of naturally-occurring duplication 

and insertion events in the NSP5 genes (Giambiagi et al., 1994; Gonzalez et al., 1989). 

Intragenic recombination events are extremely rare and only a few cases have been reported 

in the VP7 and NSP2 genes (Donker et al., 2011; Phan et al., 2007). There is one report of 

intergenic recombination in the VP7 gene (Martinez-Laso et al., 2009).

In this study we sequenced complete open reading frames (ORFs) for 33 genogroup 1 strains 

(16 G1P[8], 10 G3P[8], and 7 G9P[8]) collected from multiple cities across the United 

States. Maximum likelihood based phylogenetic analysis along with other sequence analysis 

tools helped identify multiple sub-genotype allelic constellations recently circulating in 

USA. These sub allelic constellations may enhance our understanding of RVA evolution 

under vaccine pressure and help identify possible mechanisms of immune escape which 

result in RVA gastroenteritis in vaccinated individuals.
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2. Materials and Methods

2.1 Surveillance Testing and Genotyping

Fecal specimens were collected from children with acute gastroenteritis from 12 sites in the 

United States during the 2006-2007, 2007-2008, and 2008-2009 RVA seasons. All samples 

were tested by enzyme immunoassay (EIA) using the Premier® Rotaclone® Rotavirus 

Detection Kit (Meridian Diagnostics Inc., Cincinnati, OH). At the Centers for Disease 

Control and Prevention, (CDC), RVA dsRNA was extracted and VP7 and VP4 genotyping 

was carried out using a two-step amplification method as described previously (Hull et al., 

2011).

2.2 Sample Selection

A total of 33 samples were selected for genomic characterization of which 25 were from the 

NRSSS surveillance network and 8 from the NVSN. The NRSSS samples were selected 

based upon previous EIA and VP4/VP7 genotyping results and were collected from sites in 

Boston MA (1 sample), Chicago IL (1) Orlando FL (1), Fort Worth TX (6), Indianapolis IN 

(2), Long Beach CA (3), Omaha NE (3), San Francisco CA (1), and Seattle WA (7) whereas 

the NVSN samples were from study sites in Cincinnati OH (1), Nashville TN (1), and 

Rochester NY (6). Vaccination histories were available only for the children enrolled at 

NVSN sites. All 8 samples collected at NVSN sites were from children that received 3 doses 

of RotaTeq® vaccine.

2.3 Sanger Sequencing

Total RNA was extracted from 33 samples using MagNA Pure Compact extraction system 

with the RNA Isolation kit (Roche Applied Science, Indianapolis IN) and were sent to J. 

Craig Venter Institute for high-throughput Sanger sequencing. Oligonucleotide primers were 

designed using an automated primer design tool [PMID 18405373, 23131097]. Primers, 

with M13 tags added, were designed at intervals along both the sense and antisense strands, 

and provided amplicon coverage of at least 4-fold (see supplementary material). RT-PCRs 

were performed with 1 ng of RNA using OneStep RT-PCR kits (Qiagen, Valencia, CA) 

according to manufacturer's instructions with minor modifications: 1) reactions were scaled 

down to 1/5 the recommended volumes; 2) the RNA templates were denatured at 95°C for 5 

min; and 3) 1.6 U RNase Out (Invitrogen, Carlsbad, CA) was used. The RT-PCR products 

were sequenced with an ABI Prism BigDye v3.1 terminator cycle sequencing kit (Applied 

Biosystems, Carlsbad, CA). Raw sequence traces were trimmed to remove any primer-

derived sequence as well as low quality sequence, and gene sequences were assembled using 

Minimus, part of the open-source AMOS project [The AMOS project. http://

amos.sourceforge.net]. The gene sequences were then manually edited using ClOE (Closure 

Editor; JCVI) and ambiguous regions were resolved by additional sequencing when 

necessary.

2.4 Whole Genome Phylogenetic Analysis

Genotypes for each gene segment were determined using RotaC v2.0 webserver (Maes et 

al., 2009). For each gene, multiple alignments were made using the MUSCLE algorithm 

Roy et al. Page 4

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://amos.sourceforge.net
http://amos.sourceforge.net


implemented in MEGA 5.1 (Tamura et al., 2011). Maximum likelihood trees were 

constructed for each gene in PhyML 3.0 using the optimal model for each alignment as 

identified by jModeltest 2 and approximate Likelihood Ratio Test (aLRT) statistics 

computed for branch support (Anisimova and Gascuel, 2006; Darriba et al., 2012; Guindon 

et al., 2010). The best models were selected based on the corrected Akaike Information 

Criterion and were General Time Reversible (GTR)+I+G (NSP1), GTR+G (NSP2, VP4), 

Transition model (TIM2)+I (NSP3), Tamura-Nei (TrN)+G (NSP4), Hasegawa-Kishino-

Yano (HKY)+G (NSP5), TIM1+I (VP1,VP3), GTR+I (VP2), TrN+I (VP6), HKY+I+G 

(VP7). . Sub-genotypic clusters were identified as tight phylogenetic clusters with aLRT 

support greater >75%. Sequences were tested for possible recombination using the Genetic 

Algorithm Recombination Detection (GARD) algorithm implemented in Datamonkey 

(Delport et al., 2010; Kosakovsky Pond and Frost, 2005; Kosakovsky Pond et al., 2006; 

Pond and Frost, 2005). Selection analysis was performed using a combination of Single 

Likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL) and Random 

Effects Likelihood (REL) analysis in Datamonkey (Kosakovsky Pond and Frost, 2005; Pond 

and Frost, 2005). Substitutions in the VP7, VP8* and VP5* regions were mapped on crystal 

structures available in PDB (www.pdb.org) using VMD 1.9.1 (Berman et al., 2000; 

Humphrey et al., 1996). For VP7 we used the RRV crystal 3FMG, for VP8* the Wa crystal 

2DWR and for VP5* the RRV crystal 2B4I was used (Aoki et al., 2009; Blanchard et al., 

2007; Yoder and Dormitzer, 2006).

2.5 Accession numbers

The nucleotide sequences for the ORFs of the eleven gene segments for each strain were 

submitted to GenBank (total of 363 sequences). The accession numbers are listed in Table 1.

3. Results

Complete ORF sequences were obtained for all 11 genes of 33 strains. Out of the 33 strains 

sequenced, 16 were G1P[8], 10 were G3P[8], and 7 were G9P[8] RVA strains.. Using RotaC 

2.0 webserver, we assigned genotypes to the 11 different gene segments for all 33 RVA 

samples. All strains were found to be Wa-like genogroup 1 strains and the consensus 11-

gene genotype constellation for the 33 RVA samples was G(1/3/9)-P[8]-I1-R1-C1-M1-A1-

N1-T1-E1-H1.

To this dataset we added 58 previously published sequences (McDonald et al., 2012) that 

were from samples collected during 2005 – 2008 from the NVSN site in Nashville (see 

supplementary material). The samples were all genogroup 1 strains with G1P[8], G3P[8] 

and G12P[8] genotypes (McDonald et al., 2012). Using the alignments of ORF sequences 

for each gene segment, we determined the optimal model based upon AICc values. We 

tested for subgenotype clustering of strains based on maximum likelihood analyses. Sub-

genotype clustering was identified by nodes with aLRT support ≥ 75%. The phylogenetic 

trees for all 11 gene segments are shown in Fig 1(A-K) and the color coding of alleles 

shown in Figure 2. The VP7 gene clusters are based on the various individual genotypes G1, 

G3, G9, G12 (Fig 1A). The G1 strains were further divided into three distinct clusters 

indicating 3 alleles [AI (red), AII (maroon), and AIII (olive)]. The strains in the AI Allele 
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clustered with the prototype G1P[8] strain Wa and the G1 genes of the two vaccines, 

RotaTeq® and Rotarix™, whereas the AII and AIII strains formed distinct, supported 

clusters.

For the other 10 gene segments the clusters were colored based on association with VP7 

genotypes (G1, G3, G9). The Wa-like G1 cluster was Allele A (red), the majority G3 cluster 

was Allele B (green), and the G9-like cluster was Allele C (blue). Strains that formed 

separate clusters outside the three designated alleles were separately clustered into Alleles D 

(purple), E (lime), F (pink), G (teal) and H (aqua). Doublets (pairs of strains) are indicated in 

gray and singleton and outgroup strains were labelled in black (Fig 1B-K, Fig 2). The 

analysis (of all 91 sequences) identified 3 to 7 subgenotypic clusters along with a few 

doublets and single outgroup strains for all 11 gene segments. Similar clustering was 

observed for most of the G3 and G9 RVA strains in all 11 gene segments (Figure 2). The G1 

strains were broadly divided into 3 alleles. Strains 2008747288, 2007719698, 2007744509, 

2007744510, except in the NSP3, VP6 and VP7 genes, clustered with the Wa like strains 

whereas strains 2008747100 and 2008747106 differed in their clustering pattern in the VP6, 

NSP3 and NSP1 genes only. The other G1 strains from this study did not exhibit a fixed 

clustering pattern across the 11 gene segments suggesting possible past intra-genotype 

reassortment events between the alleles.

Out of the 33 strains, 8 were from children known to have received at least one dose of 

RotaTeq® vaccine and these strains were referred to as vaccine failure (VF) strains. Six VF 

strains were from Rochester (G9P[8]) and one each (G3P[8]) from Nashville and Cincinnati. 

Four more G3P[8] VF strains from the McDonald et al. dataset were also included in this 

analysis. The G9 VF strains showed clustering across all 11 gene segments into Allele C 

whereas the G3 VF strains clustered primarily with Allele B, with a few exceptions (Fig 2). 

For strain 2009726997, the NSP4 gene did not cluster with other G3P[8] strains whereas 

strain VU08-09-22 clustered with Allele C for VP6, NSP1 and NSP4 genes and, for the 

NSP3 gene, strains not assigned to alleles (Fig 2).

We further tested for positive selection in the ORFs of all strains based on combined SLAC, 

FEL and REL tests. The number of codons analyzed per ORF is shown in Table 2. No 

positively selected sites were identified with high confidence (p ≤ 0.1) among the 91 RVA 

samples (Table 2). All the genes were found to contain sites under strong purifying 

selection, however, ranging from 38 of 175 sites in NSP4 (21.7%) to 187 of 326 sites 

(57.1%) in VP7 (Table 2). VP6 exhibited the second highest percentage of sites (49.6%) 

under purifying selection. The percentage of sites under strong purifying selection ranged 

from 25.8% (VP2) to 57.1% (VP7) in the structural proteins and 21.7% (NSP4) to 44.2% 

(NSP1) among the non-structural proteins (Table 2). Tests for recombination were also 

carried out, but recombination was not detected in any of the 11 genes based on results of 

GARD analysis.

Using alignments for the VP4 and VP7 genes, we identified amino acid substitutions in the 

antigenic regions between the wild type RVA strains and the RotaTeq® and Rotarix™ 

vaccine strains. For the VP7 protein, the VF strains in our data set were genotype G3/G9 so 

we compared them to the G3 component of RotaTeq® as no known G9 vaccine component 
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was available. The conservative or non-conservative nature of substitutions was based on the 

classification proposed by Zhang et al (Zhang, 2000). In the G3 VF strains, a single 

substitution at position 242 was detected (T242N) that was also present in the G9 VF strains 

(Fig 3). In G9 VP7 VF strains, substitutions were observed at positions 94, 96, 146, 189, 

208, 238 and 242 in antigenic sites A, B, E, C, and F (Fig 3). Positions 94, 96, 189, and 238 

are known neutralization escape mutation site (Aoki et al., 2009). In the G9 VP7 protein, we 

observed a N/S94G substitution, G96T substitution, Q146S substitution, S189Q substitution, 

Q208I substitution and a N238D substitution . Most of these substitutions are conservative 

in nature except the Q208I substitution (position 208), which causes change in polarity and 

thus possibly affecting epitope structure. None of the G1 strains analyzed in this study were 

VF strains so we could not perform the substitution comparison with the G1 genes of the 

vaccine strains.

The VP4 protein, which in the study represented all P[8] strains, was divided into the VP8* 

and VP5* regions for comparison. In VP8*, positions 106, 108, 113, 120, 145, 150, and 195 

show amino acid substitutions out of which positions 113, 145 and 195 are known 

neutralization escape mutation sites (Fig 4) (Dormitzer et al., 2004; Kobayashi et al., 1990; 

McKinney et al., 2007; Monnier et al., 2006; Zhou et al., 1994). In the VP8* region, we 

observed V106I substitution, I108V substitution, N113D substitution, T/M120N 

substitution, S145G substitution, E150D substitution, and N/D195G substitution in in all the 

G3 and G9 strains, and some G1 strains. The G1 strains that possessed the above 

substitutions were the ones that did not cluster with Allele A strains for most of the 11 

genes. Most of these changes are conservative in nature except a N113D substitution at 

position 113 involving a change in charge, M120N at position 120 involving a change in 

polarity and D195G substitution at position 195 involving a change in charge. Three sites, 

positions 281, 385 and 604, were observed to have substitutions in the VP5* region (Fig 5). 

The substitutions were V281I, H/Y385D and L604V respectively. Out of these three 

substitutions only H/Y385D substitution at position 385 was non-conservative with a change 

in charge and this position is also a known neutralization escape mutation site (Dormitzer et 

al., 2004; Kobayashi et al., 1990; Larralde et al., 1991; Matsui et al., 1989). These 

substitutions were also present in all G3 strains and a few G1 strains in this study suggesting 

possible vaccine failure phenotypes.

The 12 VF strains in this study shared a common clustering pattern across all 10 (except 

VP7) genes. The G9P[8] VF strains always clustered with Allele C strains whereas the 

G3P[8] VF strains primarily clustered with Allele B strains. The 11 gene segments of 4 

RVA samples from Fort Worth (2008747329, 2008747332, 2008747336, 2008747337) also 

shared similar clustering with respect to the G3P[8] VF strains (Fig 2). Vaccination histories 

were not available for those 4 samples but two of the 4 children were known to be age-

eligible for vaccination. The substitutions in the VP7 proteins of the G9P[8] VF strains were 

unique at 6 of 7 sites when compared with the G3P[8] VF strains and the vaccine strains. 

Only 1 of 7 substitutions was shared by both the G9 and G3 VF strains. All of the ten 

substitutions found in the VP4 protein were shared by both G9P[8] and G3P[8] vaccine 

failure strains. These substitutions were also present, however, in all of the other G3 and G9 

strains analyzed in this study and ~73% of the G1 strains.
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4. Discussion

In this study we sequenced 33 RVA samples collected post vaccine introduction 

(2006-2009) from sites across the continental United States. The G1 samples collected were 

evenly distributed across the 2006 – 2007 and the 2007 – 2008 seasons (none in the 2008 – 

2009 season). The majority of the G3 strains were from the 2007 – 2008 season whereas 

most G9 strains were from the 2008 – 2009 season. Maximum likelihood based 

phylogenetic clustering identified 3 to 7 distinct allelic clusters across all 11 gene segments. 

Allelic clusters for most part were defined by the VP7 gene with a few exceptions in some 

strains. Most G3 and G9 strains formed their own clusters across all 11 genes that also 

included the G1 alleles AI and AII in most cases. We hypothesize that the G1 strains from 

this study cluster on the tree with known G3 and G9 strains due to inter-allelic reassortment 

events as reported previously by McDonald et al. (McDonald et al., 2012). Such 

reassortment events may lead to constellations that are more favorable to the virus evolution. 

From the McDonald et al. dataset, which contain a large number of samples from the pre 

vaccination era (2005 – 2006), we identified 3 G1 alleles circulating in the population. The 

presence of such mixed allelic G1 reassortants pre vaccine introduction and their rise in 

numbers post vaccination may suggest that these mixed alleles are possibly selected for 

under vaccine pressure over older Wa like G1 alleles and can evolve to give rise to potential 

VF strains (Arista et al., 2006). Arista et al. suggested that the older Wa like lineages 

became extinct due to immune pressure but this study detected strains circulating in US 

(Allele AI) which are similar to older Wa-like strains. These strains may provide a reservoir 

for selection of constellations that may lead to formation of vaccine failure strains. A larger 

dataset both pre and post vaccination is required to understand the evolution of these mixed 

allelic G1 reassortants during the pre-vaccine era and their rise in numbers during the post-

vaccine era. In this study our allelic calls do not always match with previously reported 

studies (McDonald et al 2012). This is primarily due to Likelihood based measures that are 

heavily dependent on the dataset and the models used and hence these strains need to be re-

defined based on the current phylogenetic trees.

In this study, we found that the vaccine failure strains have a fixed constellation across the 

11 genes. It is possible that these constellations are present due to preferred interactions 

between proteins coded by these alleles which help in evading vaccination-induced 

protection in children (McDonald et al., 2009). All the vaccine failure strains also shared one 

substitution in VP7 gene and 10 substitutions in VP4 gene, which may lead to potential 

evasion of vaccine induced immunity. Although such fixed constellations and substitutions 

were observed in other G3 and G9 samples (e.g., G3P[8] strains from Fort Worth), we did 

not have the vaccination histories to determine whether these strains were also potential VF 

strains and we know that at least some of the children were too old to have been vaccinated 

(i.e., born more than 6 months before RotaTeq® vaccine was licensed in the US).

VP4 is an outer capsid component and in this study we found that 42.8% of the amino acid 

residues in this protein are under strong purifying selection. A previous study found the 

VP8* region of the P[8] protein associated with genotype G12 contains 103 amino acids 

under strong purifying selection (Mijatovic-Rustempasic et al., 2014). The VP4 contains 

epitopes involved in antibody-mediated neutralization (Dormitzer et al., 2004; Kobayashi et 
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al., 1990; Matsui et al., 1989) as well as functional domains involved in virus attachment 

and entry into host cells (Estes and Kapikian, 2007). It is likely that multiple selective 

pressures are influencing the evolution of VP4. VP6 also appears to be under strong 

purifying selection but the processes involved in the evolution of this protein remain to be 

determined. Previous studies have reported positive selection in the NSP2, NSP4, and VP7 

genes (Donker and Kirkwood, 2012; Mijatovic-Rustempasic et al., 2014; Song and Hao, 

2009) but in this study we did not find evidence of this process in our data sets for these 3 

genes

The VP7 and VP4 proteins form the outer surface structure of the viral capsid, hence their 

antigenic regions have been well characterized. RVA immunity is known to be both 

homotypic, heterotypic and polygenic (Desselberger and Huppertz, 2011). To identify sites 

that could possibly help escape vaccine derived immunity, we looked at the alignments of 

the antigenic regions of the RVA strains in this study. For the VP7 gene, seven substitutions 

were observed in all G9 strains out of which four were at known neutralization escape sites 

(Hoshino et al., 2005; Hoshino et al., 2004). When compared with Rotarix™ and RotaTeq® 

only one change Q208I was accompanied by a change in polarity observed in the G9 strains. 

Change in polarity at this site may possibly help the G9 strains escape neutralization 

although we did not find similar substitution in the G3 vaccine failure strain. Zeller et al. 

(Zeller et al., 2012) described a N238D change in G3P[8] strains from Belgium that creates 

a potential N-linked glycosylation site that is absent in the G3 strain of RotaTeq®. All 

strains in this study, except the G9 strains, have an N at position 238 indicating the presence 

of this predicted glycosylation site. For the G9 strains, a D at position 238 gives rise to a 

predicted integrin binding site instead of a glycosylation site. Whereas the glycosylation site 

is thought to facilitate viral growth in cell culture systems, the function of the integrin 

binding site is unknown (Graham et al., 2005). The N238D mutation, however, appears in 

virulent murine RVA strains produced by serial passage of avirulent RVA strains in mice 

(Tsugawa et al., 2014). It is interesting to note that even the Rotarix™ VP7 protein contains 

the same glycosylation site at position. Most of the changes at the VP7 neutralization escape 

sites identified in this study were conservative in nature. The mutations in the G9 strains 

were unique to the group but the mutation present in G3 strains were present in all G3 and 

even some G1 strains in this study. In the VP8* region of the VP4 gene, 7 substitutions were 

observed out of which 4 were non conservative in nature when compared with the Rotarix™ 

and the RotaTeq® consensus sequences. Other conserved epitope changes at multiple sites 

have previously been reported recently in strains circulating in the US and Belgium 

(Mijatovic-Rustempasic et al., 2014; Zeller et al., 2012). The functional relevance of these 

changes at known epitopes is yet to be determined. With regard to the non-conservative 

amino acid substitutions in the VP8* region, the N113D substitution at position 113 and 

D195G substitution at position 195 involve a change in charge, from neutral to negative and 

negative to neutral, respectively. Both of these sites lie in known neutralization escape sites 

and differ from the sequences of Rotarix™ and RotaTeq®. The other non-conservative 

change was at position 120 where an M120N change was accompanied with change in 

polarity. In the VP5* region there were three positions were substitutions were observed. 

Out of the 3, H/Y385D substitution at position 385, a neutralization escape site, was non-

conservative with a change in charge. Amino acid residues 382 – 400 in the VP5* region 
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also contain a potential membrane interaction loop and may be essential for viral virulence, 

especially in facilitating viral attachment or penetration (Dormitzer et al., 2004; Trask et al., 

2010), In a cell culture-murine model system, a charge change at this position has been 

shown to be associated with reversion of an avirulent strain to a virulent one (Tsugawa et al., 

2014). It is interesting to note that these substitutions are present in all sequences except the 

Allele A strains. If these substitutions are responsible for neutralization escape, it would 

suggest that the Allele A strains would gradually be replaced over time by the other 

reassortant G1 types due to vaccine derived evolutionary pressures. A more detailed analysis 

with multiple strains from pre vaccination years is necessary to assess whether these 

substitutions are actively arising under vaccine pressure.

The main limitation of the genetic analysis performed in this study was the closely related 

nature of the strains that were sampled. All strains shared a common Wa like genogroup 1 

backbone with the only difference being in the VP7 gene (G1/G3/G9). The low genetic 

distance between the genes of the strains sampled may interfere in understanding better the 

effect of vaccine pressure, geographical distance, and time on the evolution of these virus 

strains currently circulating in continental US. A more detailed sampling of multiple 

genotypes with different backbones is currently underway to determine better the effect of 

vaccine pressures on circulating strains. Also to test the hypothesis that specific amino acid 

substitutions can lead to immune evasion of vaccine induced immunity, VF strains should be 

compared to strains from unvaccinated children that are matched by age, site, and date of 

illness to control for these variables. Such studies are currently underway at CDC.

5. Conclusion

Large scale full genome sequencing initiatives are necessary to understand the changes in 

circulating strains post introduction of the vaccine. We were able to capture changes in 

recent circulating strains that could possibly lead to the rise of vaccine failure strains. We 

were also able to identify inter-allelic reassortment events in currently circulating G1 strains. 

Such reassortment events have been reported previously, albeit infrequently, (McDonald et 

al., 2011; McDonald et al., 2012) and can help in producing possibly strains better suited to 

escape vaccine derived immune pressure. This study highlights the need for further 

surveillance and other full genome initiatives to study in detail the evolution of RVA strains 

currently in circulation.
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Acknowledgment

We wish to thank Tara Kerin, Slavica Mijatovic-Rustempasic, David Spiro, and Elizabeth Teel for their 
contributions to this study. We also wish to thank Rashi Gautam for her critical review of the manuscript.

This project has been funded in part with federal funds from the National Institute of Allergy and Infectious 
Diseases, National Institutes of Health, Department of Health and Human Services under contract number 
HHSN272200900007C.

Roy et al. Page 10

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and 
powerful alternative. Systematic biology. 2006; 55:539–552. [PubMed: 16785212] 

Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR. Structure of rotavirus 
outer-layer protein VP7 bound with a neutralizing Fab. Science. 2009; 324:1444–1447. [PubMed: 
19520960] 

Arista S, Giammanco GM, De Grazia S, Ramirez S, Lo Biundo C, Colomba C, Cascio A, Martella V. 
Heterogeneity and temporal dynamics of evolution of G1 human rotaviruses in a settled population. 
Journal of virology. 2006; 80:10724–10733. [PubMed: 16928744] 

Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, Feikin DR, Binka FN, Steele AD, Laserson 
KF, Ansah NA, Levine MM, Lewis K, Coia ML, Attah-Poku M, Ojwando J, Rivers SB, Victor JC, 
Nyambane G, Hodgson A, Schodel F, Ciarlet M, Neuzil KM. Efficacy of pentavalent rotavirus 
vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan 
Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2010; 376:606–614. [PubMed: 
20692030] 

Banyai K, Laszlo B, Duque J, Steele AD, Nelson EA, Gentsch JR, Parashar UD. Systematic review of 
regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: 
insights for understanding the impact of rotavirus vaccination programs. Vaccine. 2012; 30(Suppl 
1):A122–130. [PubMed: 22520121] 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The 
Protein Data Bank. Nucleic acids research. 2000; 28:235–242. [PubMed: 10592235] 

Blanchard H, Yu X, Coulson BS, von Itzstein M. Insight into host cell carbohydrate-recognition by 
human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-
binding domain (VP8*). Journal of molecular biology. 2007; 367:1215–1226. [PubMed: 17306299] 

Carvalho-Costa FA, Araujo IT, Santos de Assis RM, Fialho AM, de Assis Martins CM, Boia MN, 
Leite JP. Rotavirus genotype distribution after vaccine introduction, Rio de Janeiro, Brazil. 
Emerging infectious diseases. 2009; 15:95–97. [PubMed: 19116062] 

Carvalho-Costa FA, Volotao Ede M, de Assis RM, Fialho AM, de Andrade Jda S, Rocha LN, Tort LF, 
da Silva MF, Gomez MM, de Souza PM, Leite JP. Laboratory-based rotavirus surveillance during 
the introduction of a vaccination program, Brazil, 2005-2009. The Pediatric infectious disease 
journal. 2011; 30:S35–41. [PubMed: 21048523] 

Cortese MM, Parashar UD, Centers for Disease, C., Prevention. Prevention of rotavirus gastroenteritis 
among infants and children: recommendations of the Advisory Committee on Immunization 
Practices (ACIP). MMWR. Recommendations and reports : Morbidity and mortality weekly 
report. Recommendations and reports / Centers for Disease Control. 2009; 58:1–25.

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel 
computing. Nature methods. 2012; 9:772. [PubMed: 22847109] 

Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic 
analysis tools for evolutionary biology. Bioinformatics. 2010; 26:2455–2457. [PubMed: 
20671151] 

Desselberger U, Huppertz HI. Immune responses to rotavirus infection and vaccination and associated 
correlates of protection. The Journal of infectious diseases. 2011; 203:188–195. [PubMed: 
21288818] 

Donker NC, Boniface K, Kirkwood CD. Phylogenetic analysis of rotavirus A NSP2 gene sequences 
and evidence of intragenic recombination. Infection, genetics and evolution : journal of molecular 
epidemiology and evolutionary genetics in infectious diseases. 2011; 11:1602–1607. [PubMed: 
21689784] 

Donker NC, Kirkwood CD. Selection and evolutionary analysis in the nonstructural protein NSP2 of 
rotavirus A. Infection, genetics and evolution : journal of molecular epidemiology and 
evolutionary genetics in infectious diseases. 2012; 12:1355–1361.

Dormitzer PR, Nason EB, Prasad BV, Harrison SC. Structural rearrangements in the membrane 
penetration protein of a non-enveloped virus. Nature. 2004; 430:1053–1058. [PubMed: 15329727] 

Roy et al. Page 11

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Estes, M.; Kapikian, A. Rotaviruses. In: Knipe, DM.; H.P.; Griffin, DE.; Lamb, RA.; Martin, MA.; 
Roizman, B.; Straus, SE., editors. Fields Virology. 5th Edition ed.. Kluwer/Lippincott; Williams 
and Wilkins; Philadelphia, PA: 2007. p. 1917-1974.

Estes, MK.; Kapikian, A. Rotaviruses. In: Knipe, DM.; Howley, PM.; Griffin, DE.; Lamb, RA.; 
Martin, MA.; Roizman, B.; Straus, SE., editors. Fields Virology. 5th ed.. Kluwer/Lippincott; 
Williams and Wilkins; Philadelphia, PA: 2007. p. 1917-1974.

Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V, Cunliffe NA, 
Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI. Serotype 
diversity and reassortment between human and animal rotavirus strains: implications for rotavirus 
vaccine programs. The Journal of infectious diseases. 2005; 192(Suppl 1):S146–159. [PubMed: 
16088798] 

Giambiagi S, Gonzalez Rodriguez I, Gomez J, Burrone O. A rearranged genomic segment 11 is 
common to different human rotaviruses. Archives of virology. 1994; 136:415–421. [PubMed: 
8031245] 

Gonzalez SA, Mattion NM, Bellinzoni R, Burrone OR. Structure of rearranged genome segment 11 in 
two different rotavirus strains generated by a similar mechanism. The Journal of general virology. 
1989; 70(Pt 6):1329–1336. [PubMed: 2543781] 

Graham KL, Fleming FE, Halasz P, Hewish MJ, Nagesha HS, Holmes IH, Takada Y, Coulson BS. 
Rotaviruses interact with alpha4beta7 and alpha4beta1 integrins by binding the same integrin 
domains as natural ligands. The Journal of general virology. 2005; 86:3397–3408. [PubMed: 
16298987] 

Gray J. Rotavirus vaccines: safety, efficacy and public health impact. Journal of internal medicine. 
2011; 270:206–214. [PubMed: 21668823] 

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and 
methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. 
Systematic biology. 2010; 59:307–321. [PubMed: 20525638] 

Hoshino Y, Honma S, Jones RW, Ross J, Santos N, Gentsch JR, Kapikian AZ, Hesse RA. A porcine 
G9 rotavirus strain shares neutralization and VP7 phylogenetic sequence lineage 3 characteristics 
with contemporary human G9 rotavirus strains. Virology. 2005; 332:177–188. [PubMed: 
15661150] 

Hoshino Y, Jones RW, Ross J, Honma S, Santos N, Gentsch JR, Kapikian AZ. Rotavirus serotype G9 
strains belonging to VP7 gene phylogenetic sequence lineage 1 may be more suitable for serotype 
G9 vaccine candidates than those belonging to lineage 2 or 3. Journal of virology. 2004; 78:7795–
7802. [PubMed: 15220453] 

Hull JJ, Teel EN, Kerin TK, Freeman MM, Esona MD, Gentsch JR, Cortese MM, Parashar UD, Glass 
RI, Bowen MD, National Rotavirus Strain Surveillance, S. United States rotavirus strain 
surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. The 
Pediatric infectious disease journal. 2011; 30:S42–47. [PubMed: 21183839] 

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of molecular graphics. 
1996; 14:33–38. 27–38. [PubMed: 8744570] 

Iturriza-Gomara M, Dallman T, Banyai K, Bottiger B, Buesa J, Diedrich S, Fiore L, Johansen K, 
Korsun N, Kroneman A, Lappalainen M, Laszlo B, Maunula L, Matthinjnssens J, Midgley S, 
Mladenova Z, Poljsak-Prijatelj M, Pothier P, Ruggeri FM, Sanchez-Fauquier A, Schreier E, Steyer 
A, Sidaraviciute I, Tran AN, Usonis V, Van Ranst M, de Rougemont A, Gray J. Rotavirus 
surveillance in europe, 2005-2008: web-enabled reporting and real-time analysis of genotyping 
and epidemiological data. The Journal of infectious diseases. 2009; 200(Suppl 1):S215–221. 
[PubMed: 19821712] 

Kirkwood CD, Boniface K, Bishop RF, Barnes GL. Australian Rotavirus Surveillance Program: 
annual report, 2009/2010. Communicable diseases intelligence. 2010; 34:427–434.

Kobayashi N, Taniguchi K, Urasawa S. Identification of operationally overlapping and independent 
cross-reactive neutralization regions on human rotavirus VP4. The Journal of general virology. 
1990; 71(Pt 11):2615–2623. [PubMed: 1701477] 

Kojima K, Taniguchi K, Kawagishi-Kobayashi M, Matsuno S, Urasawa S. Rearrangement generated 
in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. Virus 
research. 2000; 67:163–171. [PubMed: 10867195] 

Roy et al. Page 12

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting 
amino acid sites under selection. Molecular biology and evolution. 2005; 22:1208–1222. 
[PubMed: 15703242] 

Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. GARD: a genetic algorithm for 
recombination detection. Bioinformatics. 2006; 22:3096–3098. [PubMed: 17110367] 

Larralde G, Li BG, Kapikian AZ, Gorziglia M. Serotype-specific epitope(s) present on the VP8 
subunit of rotavirus VP4 protein. Journal of virology. 1991; 65:3213–3218. [PubMed: 1709699] 

Maes P, Matthijnssens J, Rahman M, Van Ranst M. RotaC: a web-based tool for the complete genome 
classification of group A rotaviruses. BMC microbiology. 2009; 9:238. [PubMed: 19930627] 

Martella V, Banyai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotaviruses. 
Veterinary microbiology. 2010; 140:246–255. [PubMed: 19781872] 

Martinez-Laso J, Roman A, Rodriguez M, Cervera I, Head J, Rodriguez-Avial I, Picazo JJ. Diversity 
of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species 
transmission and inter-genotype recombination generates alleles. The Journal of general virology. 
2009; 90:935–943. [PubMed: 19264637] 

Matsui SM, Mackow ER, Greenberg HB. Molecular determinant of rotavirus neutralization and 
protection. Advances in virus research. 1989; 36:181–214. [PubMed: 2472045] 

Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-
Gomara M, Maes P, Patton JT, Rahman M, Van Ranst M. Full genome-based classification of 
rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and 
human DS-1-like and bovine rotavirus strains. Journal of virology. 2008a; 82:3204–3219. 
[PubMed: 18216098] 

Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes 
MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi 
O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, 
Desselberger U, Van Ranst M. Uniformity of rotavirus strain nomenclature proposed by the 
Rotavirus Classification Working Group (RCWG). Archives of virology. 2011; 156:1397–1413. 
[PubMed: 21597953] 

Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes MK, Gentsch JR, Iturriza-Gomara 
M, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos 
N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M. Recommendations for the classification 
of group A rotaviruses using all 11 genomic RNA segments. Archives of virology. 2008b; 
153:1621–1629. [PubMed: 18604469] 

Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P, Van Ranst M. Phylodynamic analyses of 
rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Molecular 
biology and evolution. 2010a; 27:2431–2436. [PubMed: 20522727] 

Matthijnssens J, Joelsson DB, Warakomski DJ, Zhou T, Mathis PK, van Maanen MH, Ranheim TS, 
Ciarlet M. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-
based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq. Virology. 2010b; 403:111–
127. [PubMed: 20451234] 

Matthijnssens J, Mino S, Papp H, Potgieter C, Novo L, Heylen E, Zeller M, Garaicoechea L, 
Badaracco A, Lengyel G, Kisfali P, Cullinane A, Collins PJ, Ciarlet M, O'Shea H, Parreno V, 
Banyai K, Barrandeguy M, Van Ranst M. Complete molecular genome analyses of equine 
rotavirus A strains from different continents reveal several novel genotypes and a largely 
conserved genotype constellation. The Journal of general virology. 2012a; 93:866–875. [PubMed: 
22190012] 

Matthijnssens J, Nakagomi O, Kirkwood CD, Ciarlet M, Desselberger U, Van Ranst M. Group A 
rotavirus universal mass vaccination: how and to what extent will selective pressure influence 
prevalence of rotavirus genotypes? Expert review of vaccines. 2012b; 11:1347–1354. [PubMed: 
23249234] 

Maunula L, Von Bonsdorff CH. Frequent reassortments may explain the genetic heterogeneity of 
rotaviruses: analysis of Finnish rotavirus strains. Journal of virology. 2002; 76:11793–11800. 
[PubMed: 12414921] 

Roy et al. Page 13

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



McDonald SM, Davis K, McAllen JK, Spiro DJ, Patton JT. Intra-genotypic diversity of archival 
G4P[8] human rotaviruses from Washington, DC. Infection, genetics and evolution : journal of 
molecular epidemiology and evolutionary genetics in infectious diseases. 2011; 11:1586–1594.

McDonald SM, Matthijnssens J, McAllen JK, Hine E, Overton L, Wang S, Lemey P, Zeller M, Van 
Ranst M, Spiro DJ, Patton JT. Evolutionary dynamics of human rotaviruses: balancing 
reassortment with preferred genome constellations. PLoS pathogens. 2009; 5:e1000634. [PubMed: 
19851457] 

McDonald SM, McKell AO, Rippinger CM, McAllen JK, Akopov A, Kirkness EF, Payne DC, 
Edwards KM, Chappell JD, Patton JT. Diversity and relationships of cocirculating modern human 
rotaviruses revealed using large-scale comparative genomics. Journal of virology. 2012; 86:9148–
9162. [PubMed: 22696651] 

McKinney BA, Kallewaard NL, Crowe JE Jr. Meiler J. Using the natural evolution of a rotavirus-
specific human monoclonal antibody to predict the complex topography of a viral antigenic site. 
Immunome research. 2007; 3:8. [PubMed: 17877819] 

Mijatovic-Rustempasic S, Teel EN, Kerin TK, Hull JJ, Roy S, Weinberg GA, Payne DC, Parashar UD, 
Gentsch JR, Bowen MD. Genetic analysis of G12P[8] rotaviruses detected in the largest U.S. G12 
genotype outbreak on record. Infection, genetics and evolution : journal of molecular 
epidemiology and evolutionary genetics in infectious diseases. 2014; 21:214–219.

Mlera L, O'Neill HG, Jere KC, van Dijk AA. Whole-genome consensus sequence analysis of a South 
African rotavirus SA11 sample reveals a mixed infection with two close derivatives of the SA11-
H96 strain. Archives of virology. 2013; 158:1021–1030. [PubMed: 23263646] 

Monnier N, Higo-Moriguchi K, Sun ZY, Prasad BV, Taniguchi K, Dormitzer PR. High-resolution 
molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus 
strain. Journal of virology. 2006; 80:1513–1523. [PubMed: 16415027] 

Palombo EA. Genetic analysis of Group A rotaviruses: evidence for interspecies transmission of 
rotavirus genes. Virus genes. 2002; 24:11–20. [PubMed: 11928984] 

Parashar UD, Burton A, Lanata C, Boschi-Pinto C, Shibuya K, Steele D, Birmingham M, Glass RI. 
Global mortality associated with rotavirus disease among children in 2004. The Journal of 
infectious diseases. 2009; 200(Suppl 1):S9–S15. [PubMed: 19817620] 

Payne DC, Humiston S, Opel D, Kennedy A, Wikswo M, Downing K, Klein EJ, Kobayashi A, Locke 
D, Albertin C, Chesley C, Staat MA. A multi-center, qualitative assessment of pediatrician and 
maternal perspectives on rotavirus vaccines and the detection of Porcine circovirus. BMC 
pediatrics. 2011; 11:83. [PubMed: 21943237] 

Payne DC, Staat MA, Edwards KM, Szilagyi PG, Gentsch JR, Stockman LJ, Curns AT, Griffin M, 
Weinberg GA, Hall CB, Fairbrother G, Alexander J, Parashar UD. Active, population-based 
surveillance for severe rotavirus gastroenteritis in children in the United States. Pediatrics. 2008; 
122:1235–1243. [PubMed: 19047240] 

Phan TG, Okitsu S, Maneekarn N, Ushijima H. Evidence of intragenic recombination in G1 rotavirus 
VP7 genes. Journal of virology. 2007; 81:10188–10194. [PubMed: 17609273] 

Phua KB, Lim FS, Lau YL, Nelson EA, Huang LM, Quak SH, Lee BW, Teoh YL, Tang H, Boudville 
I, Oostvogels LC, Suryakiran PV, Smolenov IV, Han HH, Bock HL. Safety and efficacy of human 
rotavirus vaccine during the first 2 years of life in Asian infants: randomised, double-blind, 
controlled study. Vaccine. 2009; 27:5936–5941. [PubMed: 19679216] 

Pond SL, Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon 
alignments. Bioinformatics. 2005; 21:2531–2533. [PubMed: 15713735] 

Song XF, Hao Y. Adaptive evolution of rotavirus VP7 and NSP4 genes in different species. 
Computational biology and chemistry. 2009; 33:344–349. [PubMed: 19665933] 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary 
genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony 
methods. Molecular biology and evolution. 2011; 28:2731–2739. [PubMed: 21546353] 

Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD, Network W.H.-c.G.R.S. 2008 
estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the 
introduction of universal rotavirus vaccination programmes: a systematic review and meta-
analysis. The Lancet infectious diseases. 2012; 12:136–141. [PubMed: 22030330] 

Roy et al. Page 14

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Trask SD, Kim IS, Harrison SC, Dormitzer PR. A rotavirus spike protein conformational intermediate 
binds lipid bilayers. Journal of virology. 2010; 84:1764–1770. [PubMed: 20007281] 

Trojnar E, Sachsenroder J, Twardziok S, Reetz J, Otto PH, Johne R. Identification of an avian group A 
rotavirus containing a novel VP4 gene with a close relationship to those of mammalian 
rotaviruses. The Journal of general virology. 2013; 94:136–142. [PubMed: 23052396] 

Tsugawa T, Tatsumi M, Tsutsumi H. Virulence-associated genome mutations of murine rotavirus 
identified by alternating serial passages in mice and cell cultures. Journal of virology. 2014; 
88:5543–5558. [PubMed: 24599996] 

Varghese V, Das S, Singh NB, Kojima K, Bhattacharya SK, Krishnan T, Kobayashi N, Naik TN. 
Molecular characterization of a human rotavirus reveals porcine characteristics in most of the 
genes including VP6 and NSP4. Archives of virology. 2004; 149:155–172. [PubMed: 14689281] 

Ward R. Mechanisms of protection against rotavirus infection and disease. The Pediatric infectious 
disease journal. 2009; 28:S57–59. [PubMed: 19252425] 

Yoder JD, Dormitzer PR. Alternative intermolecular contacts underlie the rotavirus VP5* two- to 
three-fold rearrangement. The EMBO journal. 2006; 25:1559–1568. [PubMed: 16511559] 

Zaman K, Dang DA, Victor JC, Shin S, Yunus M, Dallas MJ, Podder G, Vu DT, Le TP, Luby SP, Le 
HT, Coia ML, Lewis K, Rivers SB, Sack DA, Schodel F, Steele AD, Neuzil KM, Ciarlet M. 
Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in 
developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010; 
376:615–623. [PubMed: 20692031] 

Zeller M, Patton JT, Heylen E, De Coster S, Ciarlet M, Van Ranst M, Matthijnssens J. Genetic 
analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses 
circulating in Belgium and rotaviruses in Rotarix and RotaTeq. Journal of clinical microbiology. 
2012; 50:966–976. [PubMed: 22189107] 

Zeller M, Rahman M, Heylen E, De Coster S, De Vos S, Arijs I, Novo L, Verstappen N, Van Ranst M, 
Matthijnssens J. Rotavirus incidence and genotype distribution before and after national rotavirus 
vaccine introduction in Belgium. Vaccine. 2010; 28:7507–7513. [PubMed: 20851085] 

Zhang J. Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian 
nuclear genes. Journal of molecular evolution. 2000; 50:56–68. [PubMed: 10654260] 

Zhou YJ, Burns JW, Morita Y, Tanaka T, Estes MK. Localization of rotavirus VP4 neutralization 
epitopes involved in antibody-induced conformational changes of virus structure. Journal of 
virology. 1994; 68:3955–3964. [PubMed: 7514681] 

Roy et al. Page 15

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 16

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 17

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 18

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 19

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 20

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 21

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 22

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 23

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 24

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy et al. Page 25

Infect Genet Evol. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Maximum likelihood trees with aLRT values showing branch support for the 11 RVA genes. 

The different alleles are colored in red, green, blue, purple, lime, pink, teal and aqua for 

Alleles A, B, C, D, E, F, G and H respectively. Doublets and singletons are shown in grey 

and black, respectively (Fig. 1A) VP7. The Allele A in further divided into three clusters: 

red strains that mostly cluster with G1 (Wa) strains and maroon and olive strains that forms 

a distinct clusters from the reference Wa Strain. (1B) VP4; (1C) VP6; (1D) VP1; (1E) VP2; 

(1F) VP3; (1G) NSP1; (1H) NSP2; (1I) NSP3; (1J) NSP4; (1K) NSP5. To see the individual 

strains comprising each colored triangle, consult the supplemental figures (see 

supplementary material).
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Figure 2. 
Allelic clusters for the 91 RVA strains. Genes from strains that clustered with Allele A (G1) 

are shown in red, maroon and olive. Allele B (G3) genes are shown in green and Allele C 

(G9) strains are shown in blue, Independent clusters are shown in purple (Allele D), lime 

(Allele E), pink (Allele F), teal (Allele G) and aqua (Allele H). Doublet strains are shown in 

grey and singleton strains in black.
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Figure 3. 
Crystal structure of RVA VP7 protein (3FMG). Substitutions at the antigenic site are 

marked in green and substitutions at reported neutralization escape mutation sites are 

marked in red.
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Figure 4. 
Crystal structure of RVA VP8* region (2DWR). Substitutions at the antigenic site are 

marked in green and substitutions at reported neutralization escape mutation sites are 

marked in red.
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Figure 5. 
Crystal structure of RVA VP5* region (2B4I). Substitutions at the antigenic site are marked 

in green and substitutions at reported neutralization escape mutation sites are marked in red.
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